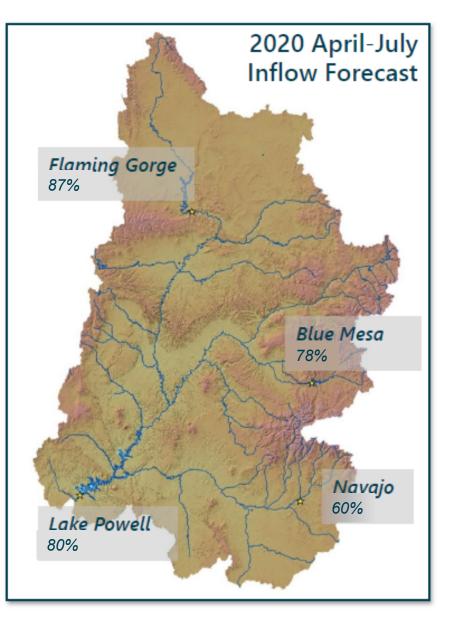
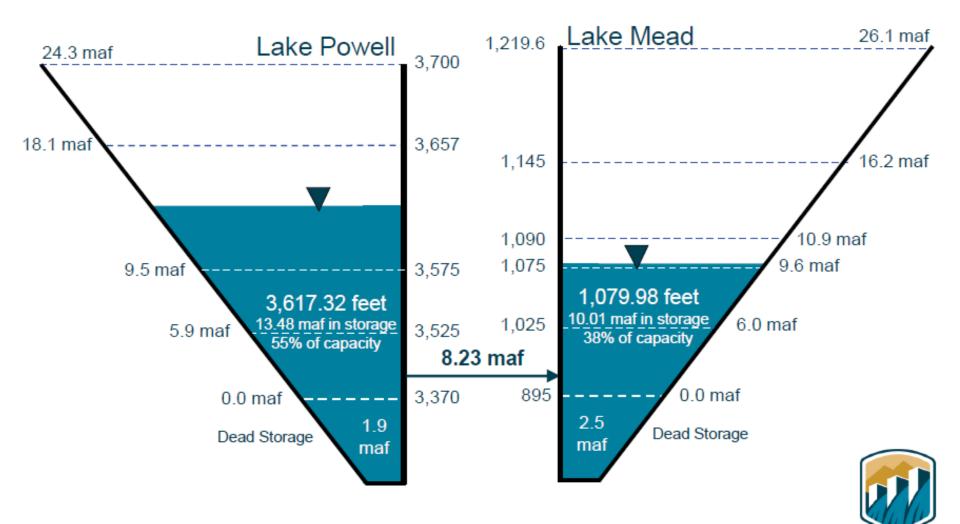

COLORADO RIVER BASIN UPDATE AND STATUS


Presented to

Arizona Water Banking Authority March 11, 2020

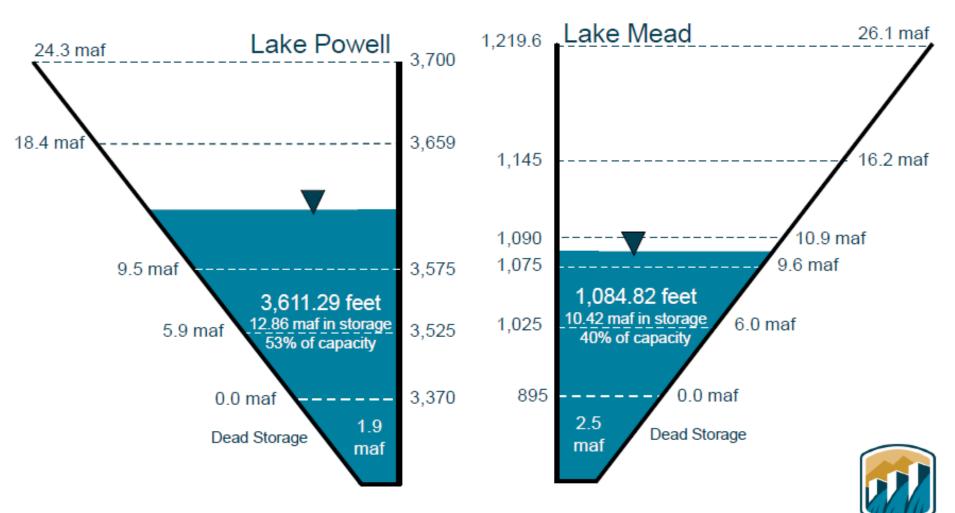



CBRFC Unregulated Inflow Forecast Dated March 2, 2020

Powell Unregulated Inflow Forecast							
Month/Period	Inflow (kaf)	Percent of Average					
Jan 2020 <i>(Observed)</i>	277	77					
Feb 2020 (Observed)	288	73					
Mar 2020	440	66					
Apr 2020	750	71					
2020 Apr-Jul	5,700	80					
WY 2020	8,564	79					

End of Water Year 2020 Projections February 2020 24-Month Study Most Probable Inflow Scenario¹

Projected Lake Powell Unregulated Inflow = 8.64 maf (80% of average)



Not to Scale

¹WY 2020 unregulated inflow into Lake Powell is based on the CBRFC forecast dated 2/4/20.

End of Calendar Year 2020 Projections February 2020 24-Month Study Most Probable Inflow Scenario¹

Based on a Lake Powell release of 8.23 maf in WY 2020 & 9.00 maf in WY 2021

Not to Scale

¹WY 2020 unregulated inflow into Lake Powell is based on the CBRFC forecast dated 2/4/20.

Lower Basin – Lake Mead Percent of Traces with Event or System Condition Results from February 2020 MTOM/CRSS (using the Full Hydrology) (values in percent)

Event or System Condition	2020	2021	2022	2023	2024
Surplus Condition – any amount (Mead \geq 1,145 ft)	0	0	2	7	11
Surplus – Flood Control	0	0	<1	<1	2
Normal or ICS Surplus Condition (Mead < 1,145 and > 1,075 ft)		100	88	62	52
Recovery of DCP ICS / Mexico's Water Savings (Mead >/≥ 1,110 ft)	0	3	7	17	22
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,090 and > 1,075 ft)	100	80	71	41	32
Shortage Condition – any amount (Mead \leq 1,075 ft)		N	11	31	37
Shortage / Reduction – 1 st level (Mead \leq 1,075 and \geq 1,050)	0	0	11	29	27
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,075 and > 1,050 ft)	0	0	11	29	27
Shortage / Reduction – 2^{nd} level (Mead < 1,050 and \geq 1,025)	0	0	0	2	9
DCP Contribution / Mexico's Water Savings (Mead \leq 1,050 and > 1,045 ft)	0	0	0	1	3
DCP Contribution / Mexico's Water Savings (Mead \leq 1,045 and > 1,040 ft)	0	0	0	<1	2
DCP Contribution / Mexico's Water Savings (Mead \leq 1,040 and > 1,035 ft)	0	0	0	<1	2
DCP Contribution / Mexico's Water Savings (Mead \leq 1,035 and > 1,030 ft)	0	0	0	0	1
DCP Contribution / Mexico's Water Savings (Mead \leq 1,030 and \geq /> 1,025 ft)	0	0	0	0	1
Shortage / Reduction – 3 rd level (Mead < 1,025)	0	0	0	0	<1
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,025 ft)</td <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td><1</td>	0	0	0	0	<1

Notes:

¹ Modeled operations include the 2007 Interim Guidelines, Upper Basin Drought Response Operations, Lower Basin Drought Contingency Plan, and Minute 323, including the Binational Water Scarcity Contingency Plan.

² Reservoir initial conditions on December 31, 2020 were simulated using the February 2020 MTOM based on the CRRFC unregulated inflow forecast ensemble dated February 4, 2020.

³ Each of the 35 initial conditions from MTOM were coupled with 113 hydrologic inflow sequences from the Full Hydrology that resamples the observed natural flow record from 1906-2018 for a total of 3955 traces analyzed.

- BUREAU OF -

RECLAMATION

⁴ Percentages shown in this table may not be representative of the full range of future possibilities that could occur with different modeling assumptions. ⁵ Percentages shown may not sum to 100% due to rounding to the nearest percent.

Lower Basin – Lake Mead Percent of Traces with Event or System Condition Results from February 2020 MTOM/CRSS (using the Stress Test Hydrology) (values in percent)

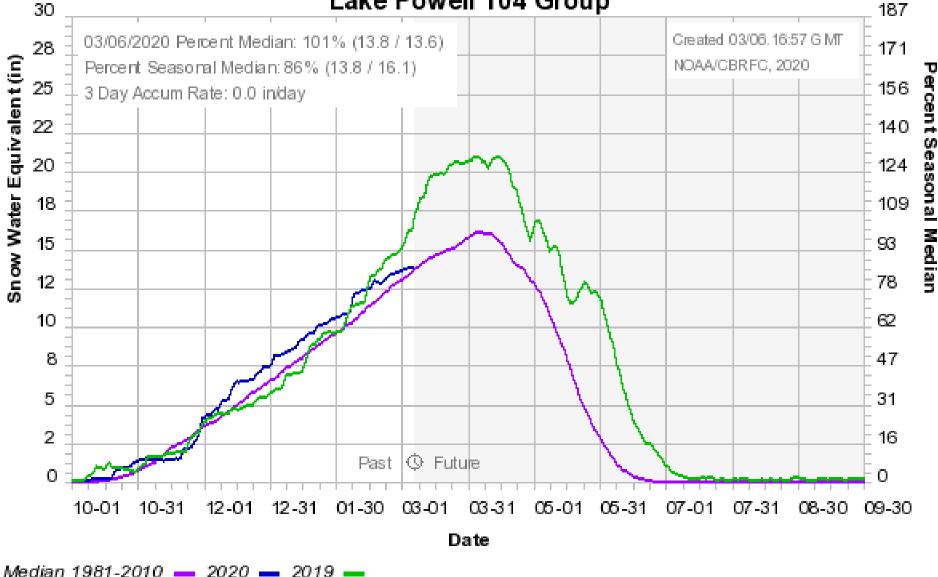
Event or System Condition	2020	2021	2022	2023	2024
Surplus Condition – any amount (Mead ≥ 1,145 ft)	0	0	<1	<1	2
Surplus – Flood Control	0	0	0	0	0
Normal or ICS Surplus Condition (Mead < 1,145 and > 1,075 ft)		100	84	54	44
Recovery of DCP ICS / Mexico's Water Savings (Mead >/ \geq 1,110 ft)	0	3	3	6	9
DCP Contribution / Mexico's Water Savings (Mead ≤ 1,090 and > 1,075 ft)	100	80	73	40	30
Shortage Condition – any amount (Mead ≤ 1,075 ft)		0	15	45	54
Shortage / Reduction – 1 st level (Mead \leq 1,075 and \geq 1,050)	0	0	15	41	32
DCP Contribution / Mexico's Water Savings (Mead \leq 1,075 and > 1,050 ft)	0	0	15	41	32
Shortage / Reduction – 2^{nd} level (Mead < 1,050 and \geq 1,025)	0	0	0	4	22
DCP Contribution / Mexico's Water Savings (Mead \leq 1,050 and > 1,045 ft)	0	0	0	3	5
DCP Contribution / Mexico's Water Savings (Mead \leq 1,045 and > 1,040 ft)	0	0	0	<1	5
DCP Contribution / Mexico's Water Savings (Mead \leq 1,040 and > 1,035 ft)	0	0	0	<1	6
DCP Contribution / Mexico's Water Savings (Mead \leq 1,035 and > 1,030 ft)	0	0	0	0	3
DCP Contribution / Mexico's Water Savings (Mead \leq 1,030 and \geq /> 1,025 ft)	0	0	0	0	3
Shortage / Reduction – 3 rd level (Mead < 1,025)	0	0	0	0	< 1
DCP Contribution / Mexico's Water Savings (Mead <math \leq 1,025 ft)	0	0	0	0	<1

Notes:

⁶ The chance of a Lower Basin Shortage in 2021 is negligible.

¹ Modeled operations include the 2007 Interim Guidelines, Upper Basin Drought Response Operations, Lower Basin Drought Contingency Plan, and Minute 323, including the Binational Water Scarcity Contingency Plan.

² Reservoir initial conditions on December 31, 2020 were simulated using the February 2020 MTOM based on the CRRFC unregulated inflow forecast ensemble dated February 4, 2020.


³ Each of the 35 initial conditions from MTOM were coupled with 31 hydrologic inflow sequences from the Stress Test Hydrology that resamples the observed natural flow record from 1988-2018 for a total of 1,085 traces analyzed.

⁴ Percentages shown in this table may not be representative of the full range of future possibilities that could occur with different modeling assumptions.

⁵ Percentages shown may not sum to 100% due to rounding to the nearest percent.

Colorado Basin River Forecast Center

Lake Powell 104 Group

